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Abstract

Seismic advances in generative AI algorithms for imagery, text, and other data
types has led to the temptation to use synthetic data to train next-generation
models. Repeating this process creates an autophagous (“self-consuming”) loop
whose properties are poorly understood. We conduct a thorough analytical and
empirical analysis using state-of-the-art generative image models of three families
of autophagous loops that differ in how fixed or fresh real training data is available
through the generations of training and in whether the samples from previous-
generation models have been biased to trade off data quality versus diversity. Our
primary conclusion across all scenarios is that without enough fresh real data in
each generation of an autophagous loop, future generative models are doomed to
have their quality (precision) or diversity (recall) progressively decrease. We term
this condition Model Autophagy Disorder (MAD), making analogy to mad cow
disease.

Generation t = 1 t = 3 t = 5 t = 7 t = 9

Figure 1: Training generative artificial intelligence (AI) models on synthetic data progressively
amplifies artifacts. As synthetic data from generative models proliferates on the Internet and in
standard training datasets, future models will likely be trained on some mixture of real and synthetic
data, forming an autophagous (“self-consuming”) loop. Here we highlight one potential unintended
consequence of autophagous training. We trained a succession of StyleGAN-2 [1] generative models
such that the training data for the model at generation t ≥ 2 was obtained by synthesizing images
from the model at generation t − 1. This particular setup corresponds to a fully synthetic loop in
Figure 3. Note how the cross-hatched artifacts (possibly an architectural fingerprint) are progressively
amplified in each new generation. Additional samples are provided Appendices C and D.
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1 Introduction

1.1 Generative models are training on synthetic data from generative models

Due to rapid advances in generative artificial intelligence (AI), synthetic data of all kinds is rapidly
proliferating. Publicly available generative models have not only revolutionized the image, audio,
and text domains [2–9], but they are also starting to impact the creation of videos, 3D models, graphs,
tables, software, and even websites [10–15]. Companies like Google, Microsoft, and Shutterstock are
incorporating generative models into their consumer services, and the output from these services and
popular generative models like Stable Diffusion [2] (for images) and ChatGPT [16] (for text) tend to
end up on the Internet. The world is racing towards a future that is best summarized by a comment
overheard at the 2022 ICLR conference: “There will soon be more synthetic data than real data on
the Internet.”

Since the training datasets for generative AI models tend to be sourced from the Internet, today’s
AI models are unwittingly being trained on increasing amounts of AI-synthesized data. Indeed,
Figure 2 demonstrates that the popular LAION-5B dataset [17], which is used to train state-of-the-art
text-to-image models like Stable Diffusion [2], contains synthetic images sampled from several earlier
generations of generative models. Formerly human sources of text are now increasingly created by
generative AI models, from user reviews [18] to news websites [15], often with no indication that the
text is synthesized [19]. As the use of generative models continues to grow rapidly, this situation will
only accelerate.

Moreover, throwing caution to the wind, AI-synthesized data is increasingly used by choice in a wide
range of applications [9, 20–24], for a number of reasons. First, it can be much easier, faster, and
cheaper to synthesize training data rather than source real-world samples, particularly for data-scarce
applications. Second, in some situations synthetic data augmentation has been found empirically
to boost AI system performance [25–27]. Third, synthetic data can protect privacy [27–29] in
sensitive applications like medical imaging or medical record aggregation [29, 30]. Fourth, and most
importantly, as deep learning models become increasingly enormous, we are simply running out of
real data on which to train them [31–33]. Interestingly, not only have practitioners begun deliberately
training AI systems on synthetic data, but also the human annotators who provide gold-standard
annotations for supervised learning tasks are increasingly using generative models to increase their
productivity and income [34].

The witting or unwitting use of synthetic data to train generative models departs from standard AI
training practice in one important respect: repeating this process for generation after generation of
models forms an autophagous (“self-consuming”) loop. As Figure 3 details, different autophagous
loop variations arise depending on how existing real and synthetic data are combined into future
training sets. Additional variations arise depending on how the synthetic data is generated. For
instance, practitioners or algorithms will often introduce a sampling bias by manually “cherry picking”
synthesized data to trade off perceptual quality (i.e., the images/texts “look/sound good”) vs. diversity
(i.e., many different “types” of images/texts are generated). The informal concepts of quality and
diversity are closely related to the statistical metrics of precision and recall, respectively [39]. If
synthetic data, baised or not, is already in our training datasets today, then autophagous loops are all
but inevitable in the future.

No matter what the training set makeup or sampling method, the potential ramifications of au-
tophagous loops on the properties and performance of generative models is poorly understood. In
one direction, repeated training with synthetic data might progressively amplify the biases and
artifacts present in any generative model. We hypothesize that synthetic data contains fingerprints
of the generator architecture (e.g., convolutional traces [40] or aliasing artifacts [41]) that may be
reinforced by self-consuming generators. To illustrate this, in Figure 1 we present samples gener-
ated by StyleGAN-2 generative models after repeated training on synthetic data. Each generation
results in a progressive amplification of cross-hatching artifacts, which are reminiscent of aliasing
in StyleGAN-2 as suggested by [41]. In another direction, autophagous loops featuring generative
models tuned to produce high quality syntheses at the expense of diversity (such as [1, 42]) might
progressively dilute the diversity of the data on the Internet. The closest exploration to this potential
outcome has been the issue of diversity exposure in recommender systems, where some studies have
shown that, if a recommendation system is tuned for maximum click rate, then an echo chamber
results, and users lose exposure to diverse ideas. [43–47]. Other studies have shown that, subject
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Figure 2: Today’s large-scale image training datasets contain synthetic data from generative
models. Datasets such as LAION-5B [17], which is oft-used to train text-to-image models like
Stable Diffusion [2], contain synthetic images sampled from earlier generations of generative models.
Pictured here are representative samples from LAION-5B that include (clockwise from upper left
and highlighted in red) synthetic images from the generative models StyleGAN [1], AICAN [35],
Pix2Pix [36], DALL-E [37], and BigGAN [38]. We found these images using simple queries on
haveibeentrained.com. Generative models trained on the LAION-5B dataset are thus closing an
autophagous (“self-consuming”) loop (see Figure 3) that can lead to progressively amplified artifacts
(recall Figure 1), lower quality (precision) and diversity (recall), and other unintended consequences.

to the recommendation logic, the echo chamber effect might not be as pronounced [48] and could
be on par with that produced by human curators [49]. Exactly how the above and other unintended
consequences could emerge from autophagous loops deserves thorough consideration and study.

For analogies and cautionary tales, one may turn to mathematics and biology. In the language of
mathematics, at one extreme, an autophagous loop is a contraction mapping that collapses to a single,
boring, point, while at the other extreme it is an unstable positive feedback loop that diverges into
bedlam. Biology provides a particularly apt “seemed like a good idea at the time” in the practice of
feeding cattle with the remains (including brains) of other cattle. The resulting autophagous loop led
to mad cow disease [50], a fatal neurodegenerative disease that eventually spread to humans before a
massive intervention brought it under control. Lest an analogous malady disrupt the AI future, and
to coin a term, it seems prudent to understand what can be done to prevent generative models from
developing Model Autophagy Disorder (MAD).

1.2 Contributions

In this paper, we conduct a careful theoretical and empirical study of AI augophagy from the
perspective of generative image models. While we focus on image data for concreteness, the concepts
developed herein apply to any data type, including text and Large Language Models (LLMs). This
paper is an elaboration of work initially published in [51, 52]; while it was being finalized, we became
aware of contemporaneous work in [53] and [54, 55] that explores certain aspects of our more general
theory. We will discuss the results of these papers in context below.

Let us summarize the three key contributions and findings that lie at the focus of this paper:

Realistic models for autophagous loops. We propose three families of increasingly complex
self-consuming training loops that realistically model the way real and synthetic data are combined
into autophagous training datasets for generative models (recall Figure 3):

• The fully synthetic loop, wherein the training dataset for each generation’s model consists
solely of synthetic data sampled from previous generations’ models. This case arises in
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Figure 3: Recursively training generative models on synthetic data sampled from other gener-
ative models results in an autophagous (“self-consuming”) loop. In this paper, we study three
variations of autophagous loops: the fully synthetic loop, where a generative model is trained on
only synthetic samples from previous generations (complete cycles through the loop); the synthetic
augmentation loop, where the training set also includes a fixed set of real data; and the fresh data
loop, where the training set also includes a fresh set of real data each generation. See Section 2.2 for
precise definitions. Crucially, the generative samples are potentially obtained from a biased sampling
process controlled by parameter λ that trades off sample quality vs. diversity.

practice, for example, when iteratively fine-tuning a generative model on its own high-
quality outputs (e.g., [56]). We show below in Section 3 that in this case either the quality
(precision) or the diversity (recall) of the generative models decreases over generations.

• The synthetic augmentation loop, wherein the training dataset for each generation’s model
consists of a combination of synthetic data sampled from previous generations’ models
plus a fixed set of real training data. This case arises in practice, for example, in model
“self-improvement,” where a model’s training data are augmented with synthetic data from
some other models (e.g., [57]). We show below in Section 4 that in this case fixed real
training data only delays the inevitable degradation of the quality or diversity of the
generative models over generations.

• The fresh data loop, wherein the training dataset for each generation’s model consists of a
combination of synthetic data sampled from previous generations’ models plus a fresh set
of real training data. This case models, for example, the standard practice where training
datasets are acquired by scraping the Internet, which will find both real and synthetic data
(recall Figure 2). We show below in Section 5 that in this case, with enough fresh real data,
the quality and diversity of the generative models do not degrade over generations.

The bottom line across all three autophagous loop models is that without enough fresh real data
each generation, future generative models are doomed to go MAD.

Sampling bias plays a key rôle in autophagous loops. Users of generative models tend to manually
curate (“cherry-pick”) their synthetic data, preferring high-quality samples and rejecting low-quality
ones. Moreover, state-of-the-art generative models typically feature controllable parameters that can
increase synthetic quality at the expense of diversity [42, 58]. We demonstrate that the sampling
biases induced through such quality-diversity (precision-recall) trade-offs have a major impact on
the behavior of an autophagous training loop. Specifically, we show that, without sampling bias,
autophagy can lead to a rapid decline of both quality and diversity, whereas, with sampling bias,
quality can be maintained but diversity degrades even more rapidly.

Autophagous loop behaviors hold across a variety of generative models and datasets. In
addition to our analytical and empirical studies on simple multivariate Gaussian and Gaussian mixture
models, we demonstrate in the main text and Appendix that our main conclusions hold across a
variety of generative models, including Denoising Diffusion Probabilistic Models (DDPM) [59],
StyleGAN-2 [58], WGAN [60], and Normalizing Flows [61] trained on a number of image datasets,
including MNIST [62] and FFHQ [63].
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This paper is organized as follows. In Section 2, we rigorously define the concept of an autophagous
loop, explain our universal biased sampling parameter λ for generative models, and define the metrics
we will use to measure the quality and diversity of a generative model. Then, in Sections 3, 4,
and 5, we study the fully synthetic loop, synthetic augmentation loop, and fresh data loop models,
respectively. We conclude with a discussion in Section 6. We report on the results of numerous
additional experiments in various Appendices.

2 Self-consuming generative models

Modern generative models have advanced rapidly in their ability to synthesize realistic data (signals,
images, videos, text, and beyond) given a finite collection of training samples from a reference (target)
probability distribution Pr. As generative models have proliferated, the datasets for training new
models have unwittingly (see [17] and Figure 2) or wittingly [57, 64–67] begun to include increasing
amounts of synthetic data in addition to “real world” samples from Pr (recall Figure 3).2 In this
section, we propose a hierarchy of increasingly realistic models for this autophagy (self-consuming)
phenomenon that will enable us to draw a number of conclusions about the potential ramifications for
generative modeling as synthetic training data proliferates.

2.1 Autophagous processes

Consider a sequence of generative models (Gt)t∈N, where the goal is to train each model to approxi-
mate a reference probability distribution Pr. At each generation t ∈ N, the model Gt is trained from
scratch on the dataset Dt = (Dt

r,Dt
s) comprised of both nt

r real data samples Dt
r drawn from Pr and

nt
s synthetic data samples Dt

s produced by already trained generative model(s). The first-generation
model G1 is trained on purely real data, i.e., n1

s = 0.

Definition. An autophagous generative process is a sequence of distributions (Gt)t∈N where each

generative model Gt is trained on data that includes samples from previous models (Gτ )t−1
τ=1.

In this work, we study cases where such a process deteriorates (goes “MAD”) over time. Let dist(·, ·)
denote some distance metric on distributions.

Definition. A MAD generative process is a sequence of distributions (Gt)t∈N that follows a random
walk such that E[dist(Gt,Pr)] increases with t.

Claim. Under mild conditions, an autophagous generative process is a MAD generative process.

By studying whether a sequence of generative models (Gt)t∈N forms a MAD generative process, we
can gain insights into the potentially detrimental effects of training generative models on synthetic
data.

Two critical aspects can drive an autophagous process MAD: The balance of real and synthetic data
in the training set (Section 2.2) and the manner in which synthetic data is sampled from the generative
models (Section 2.3).

2.2 Variants of autophagous processes

In this paper, we study three realistic autophagous mechanisms, each of which includes synthetic data
and potentially real data in a feedback loop (recall Figure 3). We now add some additional details to
the descriptions from Section 1.2:

• The fully synthetic loop: In this scenario, each model Gt for t ≥ 2 is trained exclusively on

synthetic data sampled from models (Gτ )t−1
τ=1 from previous generations, i.e., Dt = Dt

s.

• The synthetic augmentation loop: In this scenario, each model Gt for t ≥ 2 is trained
on a dataset Dt = (Dr,Dt

s) consisting of a fixed set of real data Dr sampled from Pr plus
synthetic data Dt

s from models from previous generations.

2While the term “real” implies non-synthetic data from the “real-world” (e.g., a photographic image of a
natural scene), in general, real data is any data drawn from the reference distribution Pr .
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• The fresh data loop: In this scenario, each model Gt for t ≥ 2 is trained on a dataset
Dt = (Dt

r,Dt
s) consisting of a fresh set of real data Dt

r drawn independently from Pr plus
synthetic data Dt

s from models from previous generations.

2.3 Biased sampling in autophagous loops

While the above three autophagous loops realistically mimic real-world generative model training
scenarios that involve synthetic data, it is also critical to consider how each generation’s synthetic
data is produced. In particular, not all synthetic samples from a generative model will have the same
level of fidelity to the training distribution, or “quality.” Consequently, in many applications (e.g., art
generation), practitioners “cherry-pick” synthetic samples based on a manual evaluation of perceived
quality. It can be argued that most of the synthetic images that one can find on the Internet today
are to some degree cherry-picked based on human evaluation of perceptual quality. Therefore, it is
critical that this notion be included in the modeling and analysis of autophagous loops.

In our modeling and analysis, we implement cherry-picking via the biased sampling methods that
are commonly used in generative modeling practice, such as truncation in BigGAN and StyleGAN
[38, 58], guidance in diffusion models [42], polarity sampling [68], and temperature sampling in
large language models [7]. These techniques assume that the data manifold is better approximated
in the higher density regions of the learned distribution. By biasing a generative model’s synthetic
samples to be drawn from parts of the learned generative model distribution Gt that are closer to its
modes, these methods increase sample fidelity or quality by trading off the variety or diversity of the
synthesized data [68].

We employ a number of generative models in our experiments below; each has a unique controllable
parameter to increase sample quality. We unify these parameters in the universal sampling bias
parameter λ ∈ [0, 1], where λ = 1 corresponds to unbiased sampling and λ = 0 corresponds to
sampling from the modes of the generative distribution Gt with zero variance. The exact interpretation
of λ differs across various models, but in general synthetic sample quality will increase and diversity
decrease as λ is decreased from 1. Below we provide specific definitions for λ for the various
generative models we consider in this paper:

• Gaussian model: Our theoretical analysis and simplified experiments use a multivariate
Gaussian toy model. To implement biased sampling at generation t, we estimate the mean
µt and covariance Σt of the training data and then sample from the distribution N (µt, λΣt).
As λ decreases, we draw samples closer to the mean µt.

• Generative adversarial network: In our StyleGAN experiments, we use the truncation
parameter to increase sampling quality. Style-based generative networks employ a secondary
latent space called the style-space. When using truncation during inference, latent vectors
in the style-space are linearly interpolated towards the mean of the style-space latent
distribution. We denote the truncation factor by λ; as λ is decreased from 1, samples are
drawn closer to the mean of the style-space distribution.

• Denoising diffusion probabilistic model (DDPM): For conditional diffusion models, we
use classifier-free diffusion guidance [42] to bias the sampling towards higher probability
regions. We use 10% conditioning dropout during training to enable classifier-free guidance.
We define the bias parameter λ in terms of the guidance factor w from [42] as λ = 1

1+w .

When λ = 1, the network acts as a conventional conditional diffusion model with no
guidance. As λ decreases, the diffusion model samples more closely to the modes of the
unconditional distribution, producing higher-quality samples.

2.4 Metrics for MADness

Ascertaining whether an autophagous loop has gone MAD or not (recall Definition 2.1) requires that
we measure how far the synthesized data distribution Gt has drifted from the true data distribution
Pr over the generations t. We use the notion of the Wasserstein distance (WD) as implemented by
the Fréchet Inception Distance (FID) for this purpose. We will also find the standard concepts of
precision and recall useful for making rigorous the notions of quality and diversity, respectively.

Wasserstein distance (WD), or earth mover’s or optimal transport distance [69], measures the
minimum work required to move the probability mass of one distribution to another. Computing
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the Wasserstein distance between two datasets (e.g., real and synthetic images) is prohibitively
expensive. As such, standard practice employs the Fréchet Inception Distance (FID) [70] as an
approximation, which calculates the Wasserstein-2 distance between inception feature distributions
of real and synthetic images.

Precision quantifies the portion of synthesized samples that are deemed high quality or visually
appealing. We use precision as an indicator of sample quality. We compute precision by calculating
the fraction of synthetic samples that are closer to a real data example than to their k-th nearest
neighbor [39]. We use k = 5 in all experiments.

Recall estimates the fraction of samples in a reference distribution that are inside the support of the
distribution learned by a generative model. High recall scores suggest that the generative model
captures a large portion of diverse samples from the reference distribution. We compute recall in a
manner similar to precision [39]. Given a set of synthetic samples from the generative model, we
calculate the fraction of real data samples that are closer to any synthetic sample than its k-th nearest
neighbor.

2.5 Related work

Contemporaneous work on feedback loops in generative modeling has explored certain aspects of our
more general theory that confirm our main conclusions.

In [53], the authors show that, for the fully synthetic loop without sampling bias, variational au-
toencoders (VAE) and Gaussian mixture models result in MAD generative processes. They also
investigate training loops resembling the synthetic augmentation loop and fresh data loop, again
without sampling bias, on LLMs. However, they take a slightly different approach from ours by
fine-tuning the generative model with synthetic data instead of training from scratch. Their studies
demonstrate that both the synthetic augmentation loop and fresh data loop can result in a decline in
performance in fine-tuned LLMs over generations.

In [54], the authors focus on the fully synthetic loop with sampling bias by utilizing a diffusion model
with guidance and report that it prevents a drop in image quality. In [55], the same authors show that
a synthetic augmentation loop containing a Denoising diffusion implicit model (DDIM) [71] without
sampling bias leads to poor performance over generations. The results in [53–55] report some certain
facets of a MAD generative process that align with our analytical and experimental results.

3 The fully synthetic loop: Training exclusively on synthetic data leads to

MADness

Here we thoroughly analyze the fully synthetic loop, wherein each model is trained using synthesized
data from the previous generations. We focus on the the inter-generational propagation of non-
idealities resulting from estimation errors and sampling biases. Specifically, we pinpoint the primary
source of these non-idealities and characterize the convergence of the loop. The simplicity of the fully
synthetic loop means that it does not accurately reflect the reality of generative modeling practice.
However, one specific example of this case is when generative models are fine-tuned on their own
high-quality outputs [56]. Nevertheless, this loop is in a sense the worst case and so offers valuable
insights that can be extrapolated to the more practical autophagous loops discussed in subsequent
sections.

Our analysis and experiments below support our main conclusion for the fully synthetic loop, which
can be summarized as either the quality (precision) or the diversity (recall) of the generative models
decreases over generations.

3.1 Warm up: Gaussian data and martingales

In this section, we focus the fully synthetic loop and a Gaussian reference distribution and show that
its martingale nature makes it a MAD generative process.

Consider a reference (real data) distribution Pr = N (µ0,Σ0) for some µ0 ∈ R
d and Σ0 ∈ R

d×d,
and let our generation process also be Gaussian: Gt = N (µt,Σt). At each time t ∈ N, we sample

ns vectors from Gt−1 with sampling bias λ ≤ 1; that is, we draw X1
t , . . . , X

ns

t
iid∼ N (µt−1, λΣt−1).
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We then use these vectors to construct the unbiased sample mean and covariance to fit the next model
Gt:

µt =
1

ns

ns
∑

i=1

Xi
t , Σt =

1

ns − 1

ns
∑

i=1

(Xi
t − µt)(X

i
t − µt)

⊤. (1)

In this case, we also know the distributions of these parameters. We have µt ∼ N (µt−1,
λ
ns

Σt−1)

and Σt ∼ Wd(
λ

ns−1
Σt−1, ns − 1), with Wd being the Wishart distribution. The process satisfies

E[µt|µt−1] = µt−1 and E[Σt|Σt−1] = λΣt−1, (2)

which means that µt and Σt are martingale and supermartingale processes, respectively [72]. Due to
the uncertainty in estimation of µt due to the limited sample size, µt is a Gaussian random walk that
will tend to drift from µ0 over time, randomly biasing the distribution estimate. Moreover, due to
being a bounded supermartingale, the covariance Σt is guaranteed to converge to zero. The proof of
the following result can be found in Appendix A.

Proposition. For the random process defined in Equation (1), for any λ ≤ 1, we have Σt
a.s.−−→ 0.

That is, when fitting a distribution to data sampled from that distribution repeatedly, not only should
we expect some modal drift because of the random walk in µt (reduction in quality), but we will also
inevitably experience a collapse of the variance (vanishing of diversity).

The key idea to takeaway from this is that these effects—the random walk and the variance collapse—
are solely due to the estimation error of fitting the model parameters using random data. Importantly,
this result holds true even when there is no sampling bias (i.e., λ = 1). The magnitudes of the steps
of the random walk in µt are determined by two main factors: the number of samples ns and the
covariance Σt. Unsurprisingly, the larger the ns, the smaller the steps of the random walk, since
there will be less estimation error. This will also slow the convergence of Σt to 0. Meanwhile, Σt

can be controlled using a sampling bias factor λ < 1. The smaller the choice of λ, the more rapidly
Σt will converge to zero, stopping the random walk of µt (as illustrated in 17). Thus, the sampling
bias factor λ provides a trade-off to preserve quality at the expense of diversity.

It was recently shown in related work [53] that the expected Wasserstein-2 metric E[dist(Gt,Pr)], or
distributional distance, is increasing for this process. This supports our conclusion that Gt is a MAD
generative process.

3.2 Experimental setups for the fully synthetic loop

Here we simulate the fully synthetic loop using two widely used types of deep generative models.
Recall that the fully synthetic loop first requires training an initial model G1 with a fully real dataset
containing n1

r samples. In our experiments, all subsequent models (Gt)∞t=2 are trained using only
nt
s synthetic samples from the immediately preceding model Gt−1, where each synthetic sample is

produced with sampling bias λ. Our primary experiments are organized as follows:

• Denoising diffusion probabilistic model: We use a conditional DDPM [59] with T = 500
diffusion time steps and train it on the MNIST dataset. In this experiment the synthetic
dataset Dt

s is only sampled from the previous generation Gt−1, with n1
r = nt

s = 60k for
t ≥ 2.3

• Generative adversarial network: We use unconditional StyleGAN2 architecture [58] and
train it on the FFHQ dataset [63]. The images have been downsized to 128× 128 to reduce
the computational cost. Like the previous experimental setup, the synthetic samples are
sampled from the previous generation with n1

r = nt
s = 70k for t ≥ 2.

3.3 Without sampling bias, the quality of synthetic data decreases

Let us first investigate the fully synthetic loop without any sampling bias (λ = 1). In higher-
dimensional multimodal settings, we use precision and recall to measure synthetic quality and

3For all MNIST DDPM experiments we use features extracted by LeNet [73] instead of the Inception network
for calculating the Wasserstein distance, since numerical digits do not fall into the domain of natural images. For
consistency we also use the term “FID” for the MNIST results.
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Fully synthetic loop without sampling bias: StyleGAN2 on FFHQ λ = 1 DDPM on MNIST λ = 1

Figure 4: Training generative models exclusively on synthetic data in a fully synthetic loop
without sampling bias reduces both the quality and diversity of their synthetic data decreases
over generations. We plot the FID (left), quality (precision, middle), and diversity (recall, right) of
synthetic FFHQ and MNIST images produced in fully synthetic loop.

Generation 2

λ = 1

Generation 5

λ = 1

Generation 10

λ = 1

Generation 20

λ = 1

Figure 5: Without sampling bias, synthetic data modes drift from real modes and merge. We
present t-SNE plots of the real and synthesized data for MNIST from a fully synthetic loop without
sampling bias (λ = 1). We can see the generated modes progressively get merged and lose separation
with each other. By Generation 10, the generated samples become almost illegible. See Figure 26 in
the Appendix for randomly selected synthetic images of each generation.

diversity (as supported in Appendix B.2). Figure 4 illustrates the FID, precision, and recall for each
generation of model. In the absence of sampling bias, the distribution of synthetic data undergoes a
random walk deviating from the original distribution, caused by the finite sample size of any given
training dataset. Consequently, as the generations progress, both the precision and recall of models
decrease, while the FID metric exhibits a steady increase. Figure 13 confirms that these trends in
FID, precision, and recall continue until eventually saturating.

As the generations advance, the synthetic data distribution eventually diverges completely from the
true distribution, resulting in a synthetic distribution with little resemblance to real data. This lack
of realism is reflected in how the precision and recall of each model eventually drop to zero (see
Figure 16 in the appendix for more MNIST DDPM generations), despite having a non-zero variance.

Figure 5 visualizes this process using the MNIST dataset. We employ the t-distributed Stochastic
Neighbor Embedding (t-SNE) [74] to reduce the dimensionality of both the real and synthetic MNIST
datasets at each generation. The visualization reveals that over time, the modes of the synthetic
data progressively move away from the real distribution. Despite being produced by a conditional
model, these modes eventually merge together, forming a unified, larger mode of data. This gradual
divergence away from the modes of real data contributes to the decrease in precision and recall, and
consequently, the increase in FID, resulting in a MAD generative process.

3.4 With biased sampling, quality can increase, but diversity will decrease rapidly

In this section, we present the results obtained with sampling bias (λ < 1). Figure 6 shows the FID,
precision, and recall of models at each generations. We see that involvement of sampling bias results
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Fully synthetic loop with sampling bias: StyleGan on FFHQ λ = 0.7 DDPM on MNIST λ = 0.5

Figure 6: Training generative models on high-quality synthetic data always produces a loss in
either synthetic quality or synthetic diversity. Boosting synthetic quality penalizes synthetic
diversity. We show the FID (left), quality (precision, middle), and diversity (recall, right) of synthetic
FFHQ and MNIST images produced in a fully synthetic loop. Values of λ less than 1 indicate that, at
each iteration, synthetic diversity was traded for synthetic quality. Note that opposed to the unbiased
case (Figure 4), precision does not decay with each generation, whereas recall decays significantly
faster.

Generation 2

λ = 0.8

Generation 5

λ = 0.8

Generation 10

λ = 0.8

Generation 20

λ = 0.8

Figure 7: With sampling bias, synthetic data modes drift and collapse around individual (high
quality) images instead of merging. We present t-SNE plots of the real and synthesized data for
MNIST from a fully synthetic loop with sampling bias (λ = 0.8). Note that the modes collapse onto
themselves, as opposed to merging together as seen in the unbiased case (Figure 5). The generated
samples also remain legible. See Figure 27 in Appendix for randomly selected synthetic images from
each generation. In Appendix D we present qualitative examples for StyleGAN-2 where we can see
that the cross-hatching artifacts do not appear but the distribution significantly loses diversity.

in increase of precision in generations; however, it causes a faster drop of recall compared to the case
without sampling bias, which all together results in an increase in FID, making it a MAD generative
process.

The visualization of fully synthetic loop with sampling bias is shown in Figure 7. In the presence of
sampling bias, the movement of modes of synthetic data is confined within the support of the real
data, unlike the case without sampling bias where the modes merge together. However, the variance
of synthetic data rapidly decreases, resulting in very limited diversity within the synthetic data.

We provide more experiments for the fully synthetic loop with Gaussian mixture models, WGAN
[60], and Normalizing Flows [61] in Appendix B that all result in MAD generative processes.

4 The synthetic augmentation loop: Fixed real training data may delay but

not prevent MADness

Although the analysis is tractable in the fully synthetic loop, there is little reason to believe that
the it will be representative of real practice. In training real generative models, practitioners will
always prefer to use at least some real data when available. In this section, we explore the synthetic
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StyleGAN on FFHQ, λ = 1: Fully synthetic loop Synthetic augmentation loop

Figure 8: Training generative models in a synthetic augmentation loop with both fixed real and
synthetic training data without sampling bias reduces both the quality and diversity of their
synthetic data over generations, albeit more slowly than in fully synthetic loop case. We show the
FID (left), quality (precision, middle), and diversity (recall, right) of synthetic FFHQ images produced
in mixed-training without (λ = 1) sampling bias. In Appendix F we present qualitative examples,
where we can see cross-hatching artifacts, similar to Figure 1, appearing with less prevalence.

augmentation loop, in which the training data consists of a fixed real dataset that is progressively
augmented with synthetic data.

We motivate the synthetic augmentation loop with the recent practice of using generative models for
augmenting datasets in classification tasks, which has shown promising results thanks to advancements
in generative models [26, 27]. However, the impact of data augmentation using generative models
is still not fully understood. While increasing the volume of training data generally improves the
performance of machine learning models, when synthetic samples are introduced into the dataset,
there is uncertainty due to the potential deviation of synthetic data from the true distribution of data.
Even a small discrepancy can impact the model’s fidelity to the real-world data distribution. As we
demonstrate, the presence of the fixed real dataset is not enough to prevent this loop from producing
a MAD generative process.

Our experiments below support our main conclusion for the synthetic augmentation loop, which can
be summarized as fixed real training data only delays the inevitable degradation of the quality or
diversity of the generative models over generations.

4.1 Experimental setups for the synthetic augmentation loop

Here we simulate the synthetic augmentation loop using the same deep generative models and
experimental conditions as in Section 3.2. Recall that we first require training an initial model G1

with a fully real dataset of n1
r samples. All subsequent models (Gt)∞t=2 are trained using nt

s synthetic
samples from the previous model(s) and all of the original n1

r samples used to train G1. Note that
each synthetic sample is always produced with sampling bias λ. Our experiments are organized as
follows:

• Denoising diffusion probabilistic model: We use a conditional MNIST DDPM [59] with
T = 500 diffusion time steps. In this experiment the synthetic dataset Dt

s is only sampled
from the previous generation Gt−1 with sampling bias λ, and n1

r = nt
s = 60k for all

t ≥ 2. The original real MNIST dataset is also available at every generation: D1
r = Dt

r and
n1
r = nt

r = 60k for all t.

• Generative adversarial network: We use an unconditional StyleGAN2 architecture [58]
trained on the FFHQ-128×128 dataset [63]. Like the StyleGAN experiment in Section 3.2,
at each generation t ≥ 2 we sample 70k images with no sampling bias (λ = 1) from the
immediately preceding model Gt−1. However, now the synthetic dataset Dt

s includes all the
previously generated samples (not just the ones from generation t), producing a synthetic
data pool of size nt

s = (t − 1)70k that grows linearly with respect to t. The real FFHQ
dataset is always present at every generation: D1

r = Dt
r and n1

r = nt
r = 70k for every

generation t.
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MNIST DDPM in a
synthetic augmentation loop:

λ = 1 λ = 0.8 λ = 0.66 λ = 0.5

Figure 9: When incorporating real data in the synthetic augmentation loop, even sampling bias
cannot prevent increases in FID over generations. We show the FID (left), quality (precision,
middle), and diversity (recall, right) of synthetic MNIST images produced in a synthetic augmentation
loop with different sampling biases λ.

4.2 A fixed real dataset only slows generative model degradation

Here we show that keeping the original real dataset in the synthetic augmentation loop only slows the
malignant effects of the fully synthetic loop instead of preventing them. Figure 8 shows how keeping
the full FFHQ dataset in a StyleGAN synthetic augmentation loop still produces the same symptoms
as the fully synthetic loop: the overall distance from the real dataset (FID) increases, while the quality
(precision) and diversity (recall) of synthetic samples still decrease in the absence of sampling bias.
In fact, in Appendix F we see the same artifacts appear as in Figure 1 and Appendix C. Unlike all our
other experiments, we opt for a linearly growing pool of synthetic data in the StyleGAN synthetic
augmentation loop to simulate: (a) whether access to previous generations’ synthesized samples
could help future generations learn, and (b) what could happen to a domain of data (e.g., the Internet)
in a fresh data loop with almost no newly sampled data points and unlimited access to previous
generations’ samples.

Additionally, Figure 9 depicts how the sampling bias λ affects the synthetic augmentation loop in
much the same way as it did the fully synthetic loop: the overall distance from the real dataset (FID)
still increases (albeit more slowly), while the synthetic quality (precision) can increase, but only at
the cost of accelerated losses in synthetic diversity (recall). Naturally, some values of λ are better
than others at mitigating losses in FID and precision (for example, λ = 0.8 in Figure 9).

5 The fresh data loop: Fresh real data can prevent MADness

The most elaborated our autophagous loop models enable new training data to come from two sources:
fresh real data from the reference distribution, and synthetic data from previously trained generative
models. A clear instance of this can be observed in the LAION-5B dataset [17], which already
incorporates images from generative models like Stable Diffusion [2] (recall Figure 2).

To understand the evolution of the generative models trained in this way, in this section, we investigate
the fresh data loop, which takes the synthetic augmentation loop one step further by incorporating
new fresh samples of real data at each iteration. Concretely, we imagine that the real data samples
constitute only a fraction p ∈ (0, 1) of the available data pool (e.g., a training dataset or the Internet)
with the remaining fraction 1−p being synthetic data from generative models. When we independently
sample nt data points from such a training data set to train a generative model in the tth generation,
there will be nt

r = pnt data points that originate from the real distribution and nt
s = (1 − p)nt

synthetic data points.

In this context, we observe in our experiments below that the presence of fresh data samples fortunately
mitigate the development of a MAD generative process; i.e., fresh new data helps keep the generative
distribution somewhat close to the reference distribution instead of undergoing a purely random
walk. However, we still observe some alarming phenomena. First, we find that—regardless of
the performance of early generations—the performance of later generations converges to a point
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Figure 10: In a fresh data loop, generative models converge to a state independent of the initial
generative model. We show the Wasserstein distance (WD) and Fréchet Inception Distance (FID)
of two fresh data loop models: a Gaussian model with nr = 100, ns = 900 (left) and an MNIST
DDPM model with nr = ns = 2k (right). We simulate the former with both unbiased and biased
sampling. Across all models we see that the asymptotic WD and FID is independent of initial real
samples nini.

that depends only on the amounts of real and synthetic data in the training loop. Second, we find
that, while limited amounts of synthetic data can actually improve the distributional estimate in the
fresh data loop—since synthetic data effectively transfers previously used real data to subsequent
generations and increases the effective dataset size—too much synthetic data can still dramatically
decrease the performance of the distributional estimate.

Our analysis and experiments below support our main conclusion for the fresh data loop:, which can
be summarized as with enough fresh real data, the quality and diversity of the generative models do
not degrade over generations.

5.1 Experimental setups for fresh data loop

As in previous autophagous loop variants, we assume that all models are initially trained solely on
real samples, with the number of real samples denoted here as n1

r = nini. In subsequent generations
(i.e., for t ≥ 2) the generative models are trained with a fixed number of real samples, denoted as
nt
r = nr, and a fixed number of synthetic samples, denoted by nt

s = ns. In the fresh data loop, the
dataset Dt

r is independently sampled from the reference probability distribution Pr, while the dataset
Dt

s is sampled exclusively from the previous generation Gt−1, with a sampling bias represented as λ.

Throughout the remainder of this section, we simulate the fresh data loop using different values for
nini, nr, ns, and λ, considering the following models and their associated reference probabilities:

• Gaussian modeling: We consider a normal reference distribution Pr = N (0d, Id) with
a dimension of d = 100. For modeling the Gaussian distribution, we utilize an unbiased
moment estimation approach, as described in Equation (1).

• Denoising diffusion probabilistic model: We use a conditional DDPM [59] with T = 500
diffusion time steps. We consider the MNIST dataset as our reference distribution.

The Gaussian example enables examination of the fresh data loop in greater detail, especially in the
asymptotic regime. Meanwhile, our MNIST DDPM example demonstrates the impact of fresh data
loop on more realistic dataset and model.

5.2 Initial models will eventually be forgotten in the fresh data loop

Here we investigate the impact of the initial model in the fresh data loop. We begin by training the
first generative model on nini samples, and train the remaining generative models with nr + ns

samples, where synthetic samples are synthesized with bias λ. Figure 10 summarizes the results for
this experiment.

Interestingly, for both model types, we found that the Wasserstein distance/FID converged to a
limiting value after a few iterations, and that this limiting value was independent of nini. In other
words, for a given combination of model type and ground truth distribution Pr, we observed that the
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final outcome only depends on (nr, ns, λ), that is,

lim
t→∞

E[dist(Gt,Pr)] = WD(nr, ns, λ). (3)

Thus, the initial model’s influence diminished throughout the process, with only the aforementioned
parameters having an impact on the final result.

In the context of autophagy, this point brings some hope: with the incorporation of fresh new data at
each generation, there is not necessarily an increase in E[dist(Gt,Pr)] as t grows. Thus, the fresh
data loop can prevent a MAD generative process.

5.3 A phase transition in the fresh data loop

One might suspect that a complimentary perspective to the previous observation—that fresh new
data mitigates the MAD generative process—is that synthetic data hurts a fresh data loop generative
process. However, the truth appears to be more nuanced. What we find instead is that when we mix
synthetic data trained on previous generations and fresh new data, there is a regime where modest
amounts of synthetic data actually boost performance, but when synthetic data exceeds some critical
threshold, the models suffer.

We make this observation precise through Gaussian simulations. Specifically, we consider the limit
point of the fresh data loop from Equation (3). Using the value of this limit point, which we compute
via Monte-Carlo simulation, we compare against an alternative model G(ne) trained only on a
collection of real data samples of size ne. We refer to ne as the effective sample size and compute its
value given (nr, ns, λ) via

Find ne s.t. E[dist(G(ne),Pr)] = WD(nr, ns, λ). (4)

That is, ne captures the sample efficiency of the limit point of the fresh data loop. We evaluate the
ratio ne/nr in our experiments. When ne/nr ≥ 1, the synthetic data effectively increases the number
of real samples, which we consider to be admissible, while for ne/nr < 1, synthetic data effectively
reduces the number of real samples.

We plot two perspectives of the results of this experiment in Figures 11 and 12, We discover several
effects. First, we make some observations regarding sample sizes. We find that, indeed, for a given
combination of nr and λ < 1, there exists a phase transition in ns, such that if ns exceeds some
admissible threshold, the effective sample size drops below the fresh data sample size. However, we
do not find that the ratio of nr to ns is allowed to be constant; in fact, we find the opposite trend. For
small values of nr, we find that large value of ns can be useful, but as nr grows larger, the phase
transition threshold of ns seems to become constant.

Second, we make some observations regarding the effect of sampling bias parameter λ. We find that
the value of the admissible threshold for ns depends strongly on the amount of sampling bias in the
synthetic process. Perhaps surprisingly, more sampling bias (smaller λ) actually reduces the number
of synthetic samples that can be used without harming performance. Taking the limit as λ → 1
for unbiased sampling appears to ensure that the effective number of samples is always increased.
Whether this limiting behavior extends to other generative models beyond the Gaussian modeling
setting is unclear. As discussed in Section 2.3, it is unlikely that synthetic data is generated without
sampling bias in practice, so we believe it is better to draw conclusions from the λ < 1 case.

More experiments for the fresh data loop can be found in Appendix G.

6 Discussion

In this paper we have sought to extrapolate what might happen in the near and distant future
as generative models become ubiquitous and are used to train later generations of models in an
autophagous (self-consuming) loop. Using analysis and experiments with state-of-the-art image
generative models and standard image datasets, we have studied three families of autophagous loops
and singled out the key rôle played by the models’ sampling bias. Some ramifications are clear:
without enough fresh real data each generation, future generative models are doomed to Model
Autophagy Disorder (MAD), meaning that either their quality (measured in terms of precision) or
their diversity (measured in terms of recall) will progressively degrade and generative artifacts will
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Figure 12: In a fresh data loop, sampling bias reduces the admissible synthetic sample size.
For increased sampling bias (smaller λ), the maximum number of synthetic samples ns for which
ne ≥ nr (blue area) decreases.

be amplified. One doomsday scenario is that, if left uncontrolled for many generations, MAD could
poison the data quality and diversity of the entire Internet. Short of this, it seems inevitable that
as-to-now-unseen unintended consequences will arise from AI autophagy even in the near-term.

Practitioners who are deliberately using synthetic data for training because it is cheap and easy can
take our conclusions as a warning and consider tempering their synthetic data habits, perhaps by
joining an appropriate 12-step program. Those in truly data-scarce applications can interpret our
results as a guide to how much scarce real data is necessary to avoid MADness in the future. For
example, future practitioners who wish to train a comprehensive medical image generator using
anonymous synthetic data from multiple institutions [29, 30] should now know that very deliberate
care must be taken to ensure that: (i) all anonymous synthetic images are artifact-free and diverse
(see the fully synthetic loop), and (ii) (ideally new) real data is present in the training as much as
possible (see the fresh data loop and the synthetic augmentation loop).

Practitioners who have not been intending to use synthetic training but find it polluting their training
data pool are harder to help. To maintain trustworthy datasets containing exclusively real data, the
obvious recommendation is for the community to develop methods to identify synthetic data. These
methods can then be used to filter training datasets to reject synthetic data or maintain a particular
ratio of synthetic-to-real data. In this regard, there is early progress in the AI literature of new
methods closely related to steganography [40] that can be employed for synthetic data identification.
Since generative models do not necessarily add meta-data to generated images, another approach is
to watermark synthetic data so that it can be identified and rejected when training. The reliability
of watermarking of data generated by LLMs [75] and novel methods for watermarking LLMs [76],
diffusion models [77–80], andn GANs [81] are currently active areas of research. One reservation
that we have about watermarking is that it deliberately introduces hidden artifacts in the synthetic data
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to make it detectable. These artifacts can possibly be amplified out of control by autophagy, turning
watermarking from a useful to harmful. In fresh data loop we see that a large amount of synthetic
data hurts performance, while a modest amount of synthetic data actually boosts performance.
Watermarking can help out in this scenario to decrease the amount of synthetic data, and ideally
put the model inside the good region (e.g., the blue area in Figure 11 and Figure 12), such that the
negative aspects of watermarking are avoided. This opens up interesting avenues for research on
autophagy-aware watermarking.

There are many possible extensions of the work reported here, including studying combinations of the
three families of autophagous loops we have proposed. For example, one could analyze autophagous
loops where the training data includes some synthetic data from previous generations’ models, some
fixed real data, and some fresh real data. Our analysis has focused on the distance between the
synthetic and reference data manifolds. An interesting research question is how this distance will
manifest itself in lowered performance on AI tasks like classification (since precision can be closely
related to classifier performance, the link is waiting to be made).

Finally, in this paper we have focused on imagery, but there is nothing about our conclusions
that makes them image-specific. Generative models for any kind of data can be connected into
autophagous loops and go MAD. One timely data type is the text produced by LLMs (some of which
are already being trained on synthetic data from pre-existing models like ChatGPT) [57, 66, 67],
where our results on precision and recall translate directly into the properties of the text produced
after generations of autophagy. Similar conclusions have been reached in the experiments in the
contemporaneous work of [53], but there is much work to do in this vein.
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A Proof of synthetic Gaussian martingale variance collapse

We now prove that for the process described in Equation (1), Σt
a.s.−−→ 0.

Proof. First write Xi
t =

√
λΣ

1/2
t−1Z

i
t + µt−1 for Zi

t ∼ N (0d, Id). Then consider the process tr[Σt],
which is a lower bounded submartingale:

tr[Σt] = λtr

[

Σ
1/2
t−1

(

1

N − 1

N
∑

i=1

(Zi
t − µZ

t )(Z
i
t − µZ

t )
⊤

)

Σ
1/2
t−1

]

, (5)

where µZ
t = 1

N

∑N
i=1

Zi
t . By Doob’s martingale convergence theorem [72, Ch. 11], there exists

a random variable W such that tr[Σt]
a.s.−−→ W , and we now show that we must have W = 0.

Without loss of generality, we can assume that Σt−1 is diagonal, in which case it becomes clear that
tr[Σt] is a generalized χ2 random variable, being a linear combination of d independent χ2 random
variables with N − 1 degrees of freedom, mixed with weights λdiag(Σt−1). Therefore, we can
write tr[Σt] = λYttr[Σt−1], where Yt is a generalized χ2 random variable with the same degrees of
freedom but with mixing weights diag(Σt−1)/tr[Σt−1], and E[Yt|Σt−1] = 1. This implies that at
least one mixing weight is greater than 1/D for each t, which means that for any 0 < ϵ < 1, there
exists c > 0 such that Pr(|Yt − 1| > ϵ) > c. Now consider the case λ = 1. Since |Yt − 1| > ϵ

infinitely often with probability one, the only W that can satisfy limt→∞ tr[Σ0]
∏t

s=1
Ys = W is

W = 0. For general λ ≤ 1, tr[Σt] is simply the product of the process for λ = 1 and the sequence

λt−1, and so the product must also converge to zero almost surely. Finally, since tr[Σt]
a.s.−−→ 0, we

also must have Σt
a.s.−−→ 0, where convergence is defined with any matrix norm.

B Additional experiments for the fully synthetic loop

Here we present additional experiments for the fully synthetic loop.

B.1 WGAN-GPs in an unbiased fully synthetic loop

In this experiment we trained Wasserstein GANs (with gradient penalty) [60] on the MNIST dataset
in a fully synthetic loop for 100 generations. As shown in Figure 13, the FID monotonically increases,
while quality (precision) and diversity (recall) monotonically decrease.
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Figure 13: The FID (left), quality (precision, middle), and diversity (recall, right) of synthetic FFHQ
and MNIST images produced by WGAN-GPs on MNIST.

B.2 GMMs in an unbiased fully synthetic loop

We also trained 2D GMMs in an unbiased fully synthetic loop using the same 25-mode distribution as
[82]. In Figure 14 we see that the fully synthetic loop gradually reduces the number of modes covered
by the synthetic distribution. Various metrics could measure this loss in diversity, so in Figure 15 we
explore how well each metric reflects the dynamics of the fully synthetic loop, finding that recall is
best-equipped to measure diversity in multimodal datasets.
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Figure 14: Estimated GMM [82] distributions after 1, 200, and 2k iterations of a fully synthetic loop.
Notice that the modes are lost asymptotically.
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Figure 15: For GMMs in a fully synthetic loop (Figure 14), there are three primary potential metrics
of diversity: variance*, average modal variance* (the average variance of each mode), and recall
[39]. We observe that the overall variance (left) does not reflect the loss of modes that we see in
Figure 14 as smoothly as recall (right) and average modal variance (middle). Recall is therefore a
suitable choice for measuring diversity in multimodal datasets and, unlike average modal variance, is
compatible with distributions where the number of modes is not tractable (e.g., natural images). *For
multidimensional datasets, we calculate variance as the trace of covariance.

B.3 Additional MNIST DDPM fully synthetic loop results

In Figure 6 we showcased the results of training MNIST DDPMs in a fully synthetic loop with
various sampling bias factors λ. In Figure 16 we have the results (FID, precision, and recall) more
generations t and different sampling biases λ.
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DDPMs on an MNIST fully synthetic loop: λ = 1 λ = 0.8 λ = 0.66 λ = 0.5

Figure 16: The FID (left), quality (precision, middle), and diversity (recall, right) of synthetic images
produced by DDPMs on MNIST.

B.4 Normalizing flow fully synthetic loop

We implemented the fully synthetic loop using normalizing flows [83, 84] for generative modeling
of the two-dimensional Rosenbrock reference distribution [85] in order to visualize the outcome
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of this particular scenario in a controlled setting. Normalizing flows are unique in that they enable
exact evaluation of the likelihood of the estimated distribution due to their invertibility [83]. This
leads to a relatively straightforward training procedure compared to GANs, which often require
careful balancing between the generator and discriminator networks to avoid mode collapse [86].
Therefore, by using a low-dimensional reference distribution, this setup allows us to demonstrate the
fully synthetic loop while eliminating potential training imperfections.

According to the fully synthetic loop setup, we start with a training dataset of 104 samples from

the 2D Rosenbrock distribution with the density function Pr(x1, x2) ∝ exp
(

− 1

2
x2
1 −

(

x2 − x2
1

)2
)

[85], which is plotted on the left-hand side of Figure 17. The subsequent generations of normalizing
flow models are trained using synthetic data generated by the previous pre-trained normalizing flow
for 16 generations, both with and without sampling bias. We employ the GLOW normalizing flow
architecture [84] with eight coupling layers [84] and a hidden dimension of 64. The training is carried
out for 20 epochs with a batch size of 256 for each generation, ensuring convergence as determined
by monitoring the model’s likelihood over a validation set. Figure 17 summarizes the results of
this fully synthetic loop setup. To incorporate sampling bias, we sample from N (0d, λId) from the
latent space of the model, where d = 2. As shown, regardless of the presence of sampling bias, the
resulting distribution after 16 generations loses the tails of the reference distribution, indicating a loss
of diversity. This phenomenon becomes more pronounced when sampling bias is present (λ < 1).

Ground Truth

t = 1 t = 16

λ=1

λ=0.75

λ=1

λ=0.75

Figure 17: The fully synthetic loop implememted with a formalizing flow [83] applied to the 2D
Rosenbrock distribution [85]. Sampling with or without bias still loses the tails of the distribution
(i.e., diversity). Using λ < 1 accelerates this loss of diversity.
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C FFHQ fully synthetic loop images with λ = 1

We show additional randomly chosen synthetic samples produced by the same StyleGAN FFHQ
unbiased fully synthetic loop as in Figure 1 and Figure 4.

Figure 18: Generation t = 1 of a fully synthetic loop with bias λ = 1. i.e., synthetic samples from
the first model G1.

Figure 19: Generation t = 3 of a fully synthetic loop with bias λ = 1
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Figure 20: Generation t = 5 of a fully synthetic loop with bias λ = 1

Figure 21: Generation t = 7 of a fully synthetic loop with bias λ = 1
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Figure 22: Generation t = 9 of a fully synthetic loop with bias λ = 1

D FFHQ fully synthetic loop images with λ = 0.7

As in Appendix C, here we show synthetic FFHQ images produced by a StyleGAN architecture in a
fully synthetic loop with biased sampling (λ = 0.7, Figure 6) that slows the proliferation of artifacts,
but at the cost of severely decreased diversity.

Figure 23: Generation t = 1 of a fully synthetic loop with bias λ = 0.7
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Figure 24: Generation t = 3 of a fully synthetic loop with bias λ = 0.7

Figure 25: Generation t = 5 of a fully synthetic loop with bias λ = 0.7
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E MNIST fully synthetic loop images

Here we show randomly chosen samples from each generation of an MNIST DDPM in a fully
synthetic loop for different sampling biases (as discussed in Figure 4 and Figure 6).

Gen. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 26: Without sampling bias, synthetic data modes drift from real modes and merge
together. Randomly selected synthetic MNIST images of each generation without sampling bias
(λ = 1).

Gen. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 27: With sampling bias, synthetic data modes drift and collapse around a single (high
quality) image before merging. Randomly selected synthetic MNIST images of each generation
without sampling bias (λ = 0.8).
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F FFHQ synthetic augmentation loop images with λ = 1

Figure 28: Generation t = 3 of a synthetic augmentation loop with bias λ = 1. See Figure 18 for the
samples from t = 1 (in any autophagous loop the first model G1 always trains on purely real data,
see Section 2).

Figure 29: Generation t = 6 of a synthetic augmentation loop with bias λ = 1
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G Additional results for the fresh data loop

Here we provide three additional Gaussian experiments investigating the convergence of the fresh
data loop.

Experiment 1: In Section 5.1 we assumed that we only sample from the previous generation Gt−1 for
creating the synthetic dataset Dt

s. In this experiment we sample randomly from K previous models

(Gτ )t−1

τ=t−1−K . Here nr = 103, ns = 104, and λ = 1. In Figure 30 we see how ne

nr

varies with respect

to K. Increasing the memory K in sampling from previous generations can boost performance,
however the rate of improvement becomes slower as K increases.
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Figure 30: The effective sample size ne divided by real sample size nr for different numbers of
accessed previous generations K.

Experiment 2: Here we assume that we are sampling from an environment where p percent of data
is real, and the rest is synthetic data from the previous generation Gt−1 with sampling bias λ. We
change the total number of data in the dataset n = |Dt|, with nr = p× n and ns = (1− n)× p. We
show the Wasserstein distance for different p and λ in Figure 31.

Let us first examine the dynamics of the Gaussian fresh data loop without sampling bias (λ = 1).
We observe in Figure 31 (left) that the Wasserstein distance (WD) decreases with respect to dataset
size n. However, the presence of synthetic data (p < 100%) decreases the rate at which the WD
decreases, and increases the overall WD each generation in the fresh data loop. This means that with
presence of synthetic data in the Internet, the progress of generative models will become slower

In the presence of sampling bias (λ < 1, Figure 31 right), we see that even for close values of λ to 1,
the Wasserstein distance follows a sub-linear trend, meaning that eventually the rate of progress in
generative models will effectively stop, no matter how much (realistically) the total dataset size is
increased.
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Figure 31: The Wasserstein distance (WD) as the whole dataset size increases for different values of
p (left), and sampling bias (right).
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